United States Patent

US009465601B2

(12) (10) Patent No.: US 9,465,601 B2
Burckart et al. 45) Date of Patent: *QOct. 11, 2016
’
(54) PLUGGABLE ACTIVATION ENGINE 2002/0100036 Al 7/2002 Moshir et al.
2005/0149716 Al 7/2005 Nair et al.
EXTENSIONS VIA VIRTUAL DISKS 2005/0257214 Al 112005 Moshir et al.
. . 2006/0155735 Al 7/2006 Traut et al.
(75) Inventors: Erik J. Burckart, Raleigh, NC (US); 2006/0174240 Al 82006 Flynn
Andrew Ivory, Wake Forest, NC (US); 2006/0218544 Al* 9/2006 Chakraborty et al. 717/168
H . 2007/0094348 Al 4/2007 Scheidel et al.
irthurl.(I. gl[lelolz’ Ealle.lgh’ II:IIS (gs)’ 2008/0256534 A1* 10/2008 Chess et al. 718/1
aron K. Shook, Raleigh, NC (US) 2008/0270583 Al 10/2008 Gonzalez et al.
2009/0007105 Al 1/2009 Fries et al.
(73) Assignee: International Business Machines 2009/0094576 Al 4/2009 Bouchard et al.
Corporation, Armonk, NY (US) 2009/0172662 Al 7/2009 Liu
2009/0260007 Al 10/2009 Beaty et al.
. 2009/0282404 Al 112009 Khandekar et al.
(*) Notice: SUbJeCt. to any dlsclalmer,. the term of this 2009/0300604 Al1* 12/2009 Barringercc........ 717/178
patent is extended or adjusted under 35 2009/0320014 Al 12/2009 Sudhakar
U.S.C. 154(b) by 1618 days. 2009/0328030 Al 12/2009 Fries
])))) 2010/0058327 Al* 3/2010 Dehaancooooeo.... 717/176
This patent is subject to a terminal dis- 2011/0029966 Al 2/2011 Moshir et al.
claimer. 2011/0093849 Al1* 4/2011 Chawla et al. ... 718/1
(Continued)
(21) Appl. No.: 12/763,521
(22) Filed: Apr. 20, 2010 OTHER PUBLICATIONS
. o Smith, J.; Nair, R., “Virtual Machines: Versatile Platforms for
(65) Prior Publication Data Systems and Processes” (Jun. 3, 2005), Morgan Kaufmann Pub-
US 2011/0258622 A1 Oct. 20, 2011 lishers, pp. 1-611.*
(Continued)
(51) Imt.CL
GOGF 9/455 (2006.01) Primary Examiner — Brian W Wathen
GOGF 9/445 (2006.01) (74) Attorney, Agent, or Firm — Law Office of Jim Boice
(52) US. CL
CPC . GOG6F 8/63 (2013.01); GO6F 8/65 (2013.01); 57 ABSTRACT
GOGF 9745558 (2013.01); GOGF 2 002%/;(35{)817 A computer-implemented method, system and/or computer
. . . (01) program product configure an extended virtual machine. A
(58) Field of Classification Search virtual image is executed to initialize a virtual machine. An
USPC R S 7 18/1 aCthathIl englne IS aCthated tO SeaI'Ch for SpeClal eXtenSlOIlS
See application file for complete search history. in the virtual image. The virtual machine scans at least one
(56) References Cited virtual disk for script to implement the special extensions as

U.S. PATENT DOCUMENTS

virtual machine extensions, such that the virtual machine
reads and executes the extensions prior to being available for

use.
6,393,560 Bl 5/2002 Merrill et al.
7,293,168 B2 11/2007 Maeda et al. 12 Claims, 4 Drawing Sheets
START) 402
[INTIALIZE BASE VM USING MAIN VIRTUAL IVAGE }-404
! 406
[BASE VM ACTIVATES ACTVATION ENGIE - 210
408 /
SPECIAL EXECUTE VI
EXTENSIONS IN MAIN ACTIVATION
vi? PLAN

—~{ SCAN VIRTUAL DISKS FOR SCRIPTS THAT INPLEMENT THE EXTENGIONS J~ 412

[EXECUTE OUSTOM PRE-EXECUTION SCRPTS }-44
1

[EXEQUTE VI ACTIVATION PLAN 416

[EXEGUTE CUSTOM POST-EXECUTION SCRIPTS }-418

SECONDARY EXTENSIONS?

420

US 9,465,601 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0197188 Al*
2011/0213875 Al

8/2011 Srinivasan et al. 718/1
9/2011 Ferris et al.

OTHER PUBLICATIONS

Rittinghouse, J.; Ransome, J., “Cloud Computing: Implementation,
Management, and Security” (Aug. 17, 2009), CRC Press, pp.
1-296.*

Hess, K., Newman, A., “Practical Virtualization Solutions:
Virtualization from the Trenches”, (Oct. 22, 2009), pp. 1-24.*
Schwarzkopf, R.; Schmidt, M.; Fallenbeck, N.; Freisleben, B.,
“Multi-layered Virtual Machines for Security Updates in Grid
Environments,” (Aug. 27-29, 2009), 35th Euromicro Conference on
Software Engineering and Advanced Applications, pp. 563-570
[retrieved from http://iecexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=5350011&isnumber=5349835].*

Nolan, J.; Nolan-Haley, J.; Connolly, M.J.; Hicks, S.; Alibrandi, M.,
Black’s Law Dictionary (1990), p. 979.*

Wikipedia, “INIT”, Mar. 7, 2010, pp. 1-4, http://en.wikipedia.org/
w/index.php?title=Init&oldid=348349356.

S. Yamasaki et al., “Model-Based Resource Selection for Efficient
Virtual Cluster Deployment”, Virtualization Technology in Distrib-
uted Computing, 2007, Second International Workshop on, ACM,
Piscataway, NJ, USA, Nov. 12, 2007, pp. 1-7.

International Searching Authority, International Search Report and
Written Opinion for International Application No. PCT/EP2011/
055547, Mailed Jul. 7, 2011, pp. 1-15.

Foster et al., “Virtual Clusters for Grid Communities”, Sixth IEEE
International Symposium on Cluster Computing and the Grid, pp.
513-520, May 16, 2006.

U.S. Appl. No. 13/417,113—Non-Final Office Action Mailed May
19, 2014.

U.S. Appl. No. 13/417,113—Notice of Allowance Mailed Aug. 8,
2014.

T. Chieu et al, “Dynamic Scaling of Web Applications in a
Virtualized Cloud Computing Environment”, IEEE, International
Conference on e-Business Engineering, 2009, pp. 281-286.

* cited by examiner

US 9,465,601 B2

Sheet 1 of 4

Oct. 11, 2016

U.S. Patent

| ‘Ol
Ao |
S439N cgl
NS
INIAOTd30 [wang | [Avaivion | | 3snow || asvosnan | avissia |
JUYMLA0S 7 7 [/ 7 P
/ 0 gzl ¥l zZl ozl gl Ol
o D [ovaaN [T Gd | = B e e —
|
I ETYE YR) S Se— VBN
! T 0/
oGy o | ¢
! | ol
| | | 521 w0 1 |
| | —
_ -7 WY4D0N INIWIDYNYI
| | Sl NP ONY NOLLYANDINGO
_ _ 03dIA
| ! HOVA THNLYIA
| dHO YA oL I (2w wonom |
| P 7 57 S0
| LG\ Zll LO\ NOLLYIddY
" 901 S8 WILSAS —
| [271 TN |
........ N I
x\ | %w [o% Sl

L zop~J 30V aC]

0} dm | o] 0P WILSAS ENILY¥30
Y31NdI00 Zo_%?m el ! _ m o
¥gl 0l
| {3 Qe ASONIN WALSAS
L

US 9,465,601 B2

Sheet 2 of 4

Oct. 11, 2016

U.S. Patent

¢ Ol
Zp17 Wz eplz fz1z AT AN X012 3017 €012
/ / / 4 / / / / /
mo e o || om m |- o || owm mo e o || ow
|]]
| | | | |
V02
T P9 s
N WA soos eaos
/ /
roe : W02 wa || 3140
o SN LY wwn | | WL
/
wgoz
00z 980T MDD WA
|
1]
S0z IRLSAS DNDISIAONS

US 9,465,601 B2

Sheet 3 of 4

Oct. 11, 2016

U.S. Patent

302

US'SU0I}9UU0YPUNOqU S| ceus
US'SU0I}03UL07) pUnoginQa|geus
uoupAfsddy33grwioisnpeo)
4s0SSdnIas
UsA11In0ag Sy Main3ijuod

SNOISN3LX3 NOILNI3X3-1S0d

920

NV'1d NOILVAILOY
FOVIAL TYNLAIA

o ond

US JOJUONBOUBLIOLRJWoISN) s
USWalsASSUI||Igleulalul}afe

SNOISN3LX3 NOILNI3X3-3ed

@ ol
S1dI0S NOTLNO3Y3-LS0d WOLSND 3LN03X3 € LS 20¢
/
N3
NYd NOLLYALLDY 39 NOLLYAILOY

TWNLYIA 31103X3 € dILS

S1dIOS NOILNOIXF-Fdd WOLSND 3LNOIXT T LS

US 9,465,601 B2

Sheet 4 of 4

Oct. 11, 2016

U.S. Patent

¥ Ol

av

¢SNOISN3LX3 AJVANOD3S S

0
gl S1dI¥0S NOLN3X3-LS0d WOLSNO 31NJ3X3 |
!
oLy—1 NY1d NOLLVATLOY 1A 31033 |
i
b1 S1dIH0S NOLNIXE-34d WOLSNO 31N03X3 _
!
=14, — 1 SNOISNILX3 FHL INFNF I LYHL SL¥OS 404 SYSIQ TWNLYIA VS [=——
S3A
NV A
NOILYAILOY T NIYW NI SNOISNALX3
1A 31N03X3 1103dS
4 Q0Y
o o0y 1 ANIONS NOLLYALLOY SILYAILOY WA 35v8 |
!
YOb 1 3OV THNLYIA NIVIW DNISN WA 38 JZIYILN |
~0p LYY1S

US 9,465,601 B2

1
PLUGGABLE ACTIVATION ENGINE
EXTENSIONS VIA VIRTUAL DISKS

BACKGROUND

The present disclosure relates to the field of computers,
and specifically to virtual computing devices. Still more
particularly, the present disclosure relates to configuring
virtual computing devices.

BRIEF SUMMARY

A computer-implemented method, system and/or com-
puter program product configure an extended virtual
machine. A virtual image is executed to initialize a virtual
machine. An activation engine is activated to search for
special extensions in the virtual image. The virtual machine
scans at least one virtual disk for script to implement the
special extensions as virtual machine extensions, such that
the virtual machine reads and executes the extensions prior
to being available for use.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 depicts an exemplary computer in which the
present disclosure may be implemented;

FIG. 2 illustrates an exemplary environment in which
virtual machines are configured and managed during opera-
tion;

FIG. 3 depicts an activation engine configuring an
extended virtual machine in accordance with one embodi-
ment of the present disclosure; and

FIG. 4 is a high level flow chart of one or more exemplary
steps performed by a processor to configure an extended
virtual machine.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, the present
disclosure may be embodied as a system, method or com-
puter program product. Accordingly, the present disclosure
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
software, micro-code, etc.) or an embodiment combining
software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module” or “system.”
Furthermore, the present disclosure may take the form of a
computer program product embodied in one or more com-
puter-readable medium(s) having computer-readable pro-
gram code embodied thereon.

Any combination of one or more computer-readable
medium(s) may be utilized. The computer-readable medium
may be a computer-readable signal medium or a computer-
readable storage medium. A computer-readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer-readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any

10

15

20

25

30

40

45

50

55

60

65

2

suitable combination of the foregoing. In the context of this
document, a computer-readable storage medium may be any
tangible medium that can contain or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer-readable signal medium may include a propa-
gated data signal with computer-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer-readable signal medium may be any computer-
readable medium that is not a computer-readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer-readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

With reference now to the figures, and in particular to
FIG. 1, there is depicted a block diagram of an exemplary
computer 102, which may be utilized by the present disclo-
sure. Note that some or all of the exemplary architecture,
including both depicted hardware and software, shown for
and within computer 102 may be utilized by software
deploying server 150 and/or user’s computer 152.

Computer 102 includes a processor unit 104 that is
coupled to a system bus 106. Processor unit 104 may utilize
one or more processors, each of which has one or more
processor cores. A video adapter 108, which drives/supports
a display 110, is also coupled to system bus 106. In one
embodiment, a switch 107 couples the video adapter 108 to
the system bus 106. Alternatively, the switch 107 may
couple the video adapter 108 to the display 110. In either
embodiment, the switch 107 is a switch, preferably mechani-
cal, that allows the display 110 to be coupled to the system
bus 106, and thus to be functional only upon execution of
instructions (e.g., virtual machine configuration and man-
agement progrtam—VMCMP 148 described below) that
support the processes described herein.

System bus 106 is coupled via a bus bridge 112 to an
input/output (I/O) bus 114. An /O interface 116 is coupled
to I/O bus 114. I/O interface 116 affords communication
with various I/O devices, including a keyboard 118, a mouse
120, a media tray 122 (which may include storage devices
such as CD-ROM drives, multi-media interfaces, etc.), a
printer 124, and (if a VHDL chip 137 is not utilized in a
manner described below), external USB port(s) 126. While
the format of the ports connected to I/O interface 116 may
be any known to those skilled in the art of computer
architecture, in a preferred embodiment some or all of these
ports are universal serial bus (USB) ports.

As depicted, computer 102 is able to communicate with a
software deploying server 150, user’s computer 152 and/or
resources cloud 154 via network 128 using a network
interface 130. Network 128 may be an external network such
as the Internet, or an internal network such as an Ethernet or
a virtual private network (VPN).

A hard drive interface 132 is also coupled to system bus
106. Hard drive interface 132 interfaces with a hard drive
134. In a preferred embodiment, hard drive 134 populates a
system memory 136, which is also coupled to system bus
106. System memory is defined as a lowest level of volatile
memory in computer 102. This volatile memory includes
additional higher levels of volatile memory (not shown),
including, but not limited to, cache memory, registers and

US 9,465,601 B2

3

buffers. Data that populates system memory 136 includes
computer 102°s operating system (OS) 138 and application
programs 144.

OS 138 includes a shell 140, for providing transparent
user access to resources such as application programs 144.
Generally, shell 140 is a program that provides an interpreter
and an interface between the user and the operating system.
More specifically, shell 140 executes commands that are
entered into a command line user interface or from a file.
Thus, shell 140, also called a command processor, is gen-
erally the highest level of the operating system software
hierarchy and serves as a command interpreter. The shell
provides a system prompt, interprets commands entered by
keyboard, mouse, or other user input media, and sends the
interpreted command(s) to the appropriate lower levels of
the operating system (e.g., a kernel 142) for processing.
Note that while shell 140 is a text-based, line-oriented user
interface, the present disclosure will equally well support
other user interface modes, such as graphical, voice, ges-
tural, etc.

As depicted, OS 138 also includes kernel 142, which
includes lower levels of functionality for OS 138, including
providing essential services required by other parts of OS
138 and application programs 144, including memory man-
agement, process and task management, disk management,
and mouse and keyboard management.

Application programs 144 include a renderer, shown in
exemplary manner as a browser 146. Browser 146 includes
program modules and instructions enabling a world wide
web (WWW) client (i.e., computer 102) to send and receive
network messages to the Internet using hypertext transfer
protocol (HTTP) messaging, thus enabling communication
with software deploying server 150 and other described
computer systems.

Application programs 144 in computer 102’s system
memory (as well as software deploying server 150°s system
memory) also include a virtual machine configuration and
management program (VMCMP) 148. VMCMP 148
includes code for implementing the processes described
below, including those described in FIGS. 2-4. In one
embodiment, computer 102 is able to download VMCMP
148 from software deploying server 150, including in an
on-demand basis, such that the code from VMCMP 148 is
not downloaded until runtime or otherwise immediately
needed by computer 102. Note further that, in one embodi-
ment of the present disclosure, software deploying server
150 performs all of the functions associated with the present
disclosure (including execution of VMCMP 148), thus free-
ing computer 102 from having to use its own internal
computing resources to execute VMCMP 148.

Also stored in system memory 136 is a VHDL (VHSIC
hardware description language) program 139. VHDL is an
exemplary design-entry language for field programmable
gate arrays (FPGAs), application specific integrated circuits
(ASICs), and other similar electronic devices. In one
embodiment, execution of instructions from VMCMP 148
causes VHDL program 139 to configure VHDL chip 137,
which may be an FPGA, ASIC, etc.

In another embodiment of the present disclosure, execu-
tion of instructions from VMCMP 148 results in a utilization
of VHDL program 139 to program a VHDL emulation chip
151. VHDL emulation chip 151 may incorporate a similar
architecture as described herein for VHDL chip 137. Once
VMCMP 148 and VHDL program 139 program VHDL
emulation chip 151, VHDL emulation chip 151 performs, as
hardware, some or all functions described by one or more
executions of some or all of the instructions found in

20

25

40

45

50

55

4

VMCMP 148. That is, the VHDL emulation chip 151 is a
hardware emulation of some or all of the software instruc-
tions found in VMCMP 148. In one embodiment, VHDL
emulation chip 151 is a programmable read only memory
(PROM) that, once burned in accordance with instructions
from VMCMP 148 and VHDL program 139, is permanently
transformed into a new circuitry that performs the functions
needed to perform the process described below in FIGS. 2-4.

Resources cloud 154 supports cloud computing, in which
software and hardware resources are shared. In one embodi-
ment, the virtual disks and/or virtual machines described
herein reside within the resources cloud 154, which is
supported by multiple physical machines (not shown).

The hardware elements depicted in computer 102 are not
intended to be exhaustive, but rather are representative to
highlight essential components required by the present dis-
closure. For instance, computer 102 may include alternate
memory storage devices such as magnetic cassettes, digital
versatile disks (DVDs), Bernoulli cartridges, and the like.
These and other variations are intended to be within the
spirit and scope of the present disclosure.

With reference now to FIG. 2, an exemplary environment
in which extended virtual machines (EVMs) are configured
and managed during operation in accordance with one
embodiment of the present disclosure is presented. A pro-
visioning system 202, which may reside on a computer such
as computer 102 shown in FIG. 1, supervises operations of
multiple hypervisors 204q-n (where “n” is an integer).
Through the use of virtual machine (VM) configuring logic
206 and virtual drives 208a-m (where “m” is an integer”),
both of which may be part of VMCMP 148 described above,
hypervisor 204q is able to configure, manage and operate
multiple VMs 210g-x (where “x” is an integer). Note that
hypervisor 2045 and hypervisor 204n have a similar con-
struction as hypervisor 204a, and are respectively able to
configure, manage and operate multiple VMs 212a-y (where
“y” is an integer) and multiple VMs 214a-z (where “z” is an
integer). In accordance with one embodiment of the present
disclosure, when one of the VMs 210a-x is extended into an
extended VM (as described herein), a complete image of that
extended VM need not be transferred to the VM image file
216 in the hypervisor 204a. Rather, only a main VM image
file and tags to extensions need be stored in the VM image
file 216.

Note that provisioning system 202, hypervisors 204a-n,
and/or all VMs shown in FIG. 2 may reside in computer 102,
resources cloud 154, and/or be distributed between the
computer 102 and resources cloud 154 shown in FIG. 1.

With reference now to FIG. 3, assume that an activation
engine 302, which may reside in any hypervisor depicted in
FIG. 2, is assigned the duty of implementing an extended
virtual machine (EVM). As understood by those skilled in
the art of computers, a virtual machine (VM) is a software
simulation of a physical computer. Such a VM is able to
handle all processes that a physical computer can perform,
including storing data, executing instructions, transmitting
data across networks, busses, etc. As shown in Step 1 of FIG.
3, the activation engine 302 first executes any custom
pre-execution scripts found in an extended virtual image file.
An extended virtual image file is a set of instructions that
provides instructions for configuring an extended virtual
machine. The extended virtual machine includes a main
virtual machine, as well as virtual machine extensions.
Before creating the main virtual machine, however, pre-
execution extensions 304 are run. Execution of such pre-
execution extensions 304 can result in establishing billing
systems used to charge a user (e.g., the user of user computer

US 9,465,601 B2

5

152 shown in FIG. 1) that requested the extended virtual
machine (EVM). This billing can be based on the length of
time that the EVM is operational, the number of transactions
executed by the EVM, the specific abilities (e.g., processing
power, transmission bandwidth, memory, etc.) of the EVM,
etc. In addition, the pre-execution extensions can result in
establishing a custom performance monitor that monitors the
activities (e.g., through a dashboard) of the EVM. A billing
system and/or custom performance monitor are examples of
customization that can be incorporated into the EVM, and
should not be construed as being a limited listing of such
customizations.

As describe in Step 2, a virtual image activation plan 306
can then be executed to configure the main VM, which along
with the virtual machine extensions created by pre-execution
extensions 304 and post-execution extensions 308 form the
EVM. As described in Step 3, executing the custom post-
execution extensions 308 results in additional virtual
machine extensions, including security systems (e.g., pass-
word protection, encryption, etc.) for the EVM, single sign
on (SSO) setup (allowing a single user to sign on to and use
multiple EVMSs), and the creation of inbound and outbound
connections (e.g., virtual ports) to the EVM. Note that
pre-execution extensions 304, virtual image activation plan
306, post-execution extensions 308, as well as the main
virtual image used to initialize the main virtual machine can
be stored in the virtual drives (e.g., 208a-m) located in the
hypervisors (e.g., 204a) shown in FIG. 2. Note also that
calling the extensions, and thus extending the VM, is per-
formed by the main VM, such that the main VM is able to
self-extend/customize itself.

With reference now to FIG. 4, a high level flow chart of
one or more exemplary steps performed by a processor to
configure an extended virtual machine is presented. After
initiator block 402, which may be prompted by a user of user
computer 152 shown in FIG. 1 requesting that an extended
virtual machine (EVM) be configured, a main virtual
machine is initialized using a main virtual image (block
404). This “main virtual machine” can be viewed as a
“backbone” of the EVM, which is then extended by the pre
and/or post extensions described herein by activating (block
406) the activation engine 302 shown in FIG. 3. This
activation engine 302, which in one embodiment is part of
the main virtual machine, then checks for any special
extensions in the main virtual image (query block 408). If
there are no such special extensions in the main virtual
image (VI), then the VM is activated as a non-extended
(traditional) VM (block 410) and the process ends (termi-
nator block 422). However, if there are special extensions in
the main VI (query block 408), then the base VM scans/
searches through multiple virtual disks (block 412) to locate
a script needed to implement the special extensions as
virtual machine extensions. Thereafter, the pre-execution
scripts are executed (block 414), the main VI activation plan
is executed to create the main VM (block 416), and the
post-execution scripts are executed (block 418). The script
execution described in blocks 414-418 results in the com-
plete EVM being configured and deployed.

As described in query block 420, there may be occasions
in which one virtual disk must call on another virtual disk for
the desired extension. If so, then these “secondary exten-
sions” are called from a second virtual disk by the first
virtual disk, such that several extensions can be chained
together and executed sequentially (block 412).

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-

20

25

30

40

45

6

gram products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the present disclosure. As used herein, the
singular forms “a”, “an” and “the” are intended to include
the plural forms as well, unless the context clearly indicates
otherwise. It will be further understood that the terms
“comprises” and/or “comprising,” when used in this speci-
fication, specify the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
various embodiments of the present disclosure has been
presented for purposes of illustration and description, but is
not intended to be exhaustive or limited to the disclosure in
the form disclosed. Many modifications and variations will
be apparent to those of ordinary skill in the art without
departing from the scope and spirit of the disclosure. The
embodiment was chosen and described in order to best
explain the principles of the disclosure and the practical
application, and to enable others of ordinary skill in the art
to understand the disclosure for various embodiments with
various modifications as are suited to the particular use
contemplated.

Note further that any methods described in the present
disclosure may be implemented through the use of a VHDL
(VHSIC Hardware Description Language) program and a
VHDL chip. VHDL is an exemplary design-entry language
for Field Programmable Gate Arrays (FPGAs), Application
Specific Integrated Circuits (ASICs), and other similar elec-
tronic devices. Thus, any software-implemented method
described herein may be emulated by a hardware-based
VHDL program, which is then applied to a VHDL chip, such
as a FPGA.

Having thus described embodiments of the disclosure of
the present application in detail and by reference to illus-
trative embodiments thereof, it will be apparent that modi-
fications and variations are possible without departing from
the scope of the disclosure defined in the appended claims.

What is claimed is:

1. A computer program product for configuring an
extended virtual machine, the computer program product
comprising:

a computer readable storage media;

US 9,465,601 B2

7

first program instructions to execute a main virtual image

to initialize a main virtual machine;

second program instructions to activate an activation

engine to search for special extensions in the main
virtual image; and

third program instructions to scan at least one virtual disk

for script to implement the special extensions as virtual
machine extensions, wherein the main virtual machine
and the virtual machine extensions combine to config-
ure an extended virtual machine; and wherein the first,
second and third program instructions are stored on the
computer readable storage media.

2. The computer program product of claim 1, wherein the
virtual machine extensions comprise pre-execution exten-
sions that are implemented before the main virtual machine
is configured.

3. The computer program product of claim 2, wherein the
pre-execution extensions configure a billing system and a
performance monitor for the extended virtual machine.

4. The computer program product of claim 1, wherein the
virtual machine extensions comprise post-execution exten-
sions that are implemented after the main virtual machine is
configured.

5. The computer program product of claim 4, wherein the
post-execution extensions configure security, single sign on
(SSO) setup, inbound connections and outbound connec-
tions for the extended virtual machine.

6. A computer system comprising:

a central processing unit (CPU), a computer readable

memory, and a computer readable storage media;

first program instructions to execute a main virtual image

to initialize a main virtual machine;

10

15

20

25

30

8

second program instructions to activate an activation
engine to search for special extensions in the main
virtual image; and

third program instructions to scan at least one virtual disk

for script to implement the special extensions as virtual
machine extensions, wherein the main virtual machine
and the virtual machine extensions combine to config-
ure an extended virtual machine; and wherein the first,
second and third program instructions are stored on the
computer readable storage media for execution by the
CPU via the computer readable memory.

7. The computer system of claim 6, wherein the virtual
machine extensions comprise pre-execution extensions that
are implemented before the main virtual machine is config-
ured.

8. The computer system of claim 7, wherein the pre-
execution extensions configure a billing system and a per-
formance monitor for the extended virtual machine.

9. The computer system of claim 6, wherein the virtual
machine extensions comprise post-execution extensions that
are implemented after the main virtual machine is config-
ured.

10. The computer system of claim 9, wherein the post-
execution extensions configure security, single sign on
(SSO) setup, inbound connections and outbound connec-
tions for the extended virtual machine.

11. The computer system of claim 6, wherein said at least
one virtual disk resides in a hypervisor that configures the
extended virtual machine.

12. The computer system of claim 6, wherein the extended
virtual machine is part of a computer cloud of resources.

#* #* #* #* #*

